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Abstract

Previous attempts to perform figure-ground segmentation
have universally made the assumption that observations
of the scene are independent in time. In the vocabulary
of the stochastic systems literature: the individual pixels
are taken to be samples from a stationary, white random
processes with independent increments. Many scenes that
could loosely be referred to as static often contain cyclosta-
tionary processes: meaning that there is significant struc-
ture in the correlations between observations across time.
A tree swaying in the wind or a wave lapping on a beach is
not just a collection of randomly shuffled appearances, but a
physical system that has characteristic frequency responses
associated with its dynamics. Our novel method leverages
this fact to perform object detection based solely on the dy-
namics, rather than the appearance, of the pixels in a scene.
Results are presented for a challenging scene containing
wave activity in the background that visually masks a low-
contrast foreground target.

1 Introduction

The main contribution of this work is an algorithm, called
Wave Vision, or Waviz, that explicitly harnesses the scene
dynamics to improve segmentation. This allowsWaviz to
correctly interpret scenes that would confound appearance-
based algorithms by having high-variance distractors in the
presence of low-contrast targets, specifically when the dis-
tractors are well modeled as cyclostationary random pro-
cesses. This is often the case, since real-world physics of-
ten induces near-periodic phenomenon in the environment:
the motion of plants driven by wind, the action of waves
on a beach, and the appearance of rotating objects. These
periodic patterns are so strongly constrained by the relevant
physics that efforts have been made to use then to recover
camera calibration parameters by observing them[10]. In
this work we merely strive to capture and exploit these pat-
terns for segmentation.

2 Background

There is a rich literature that addresses the problem of
detecting objects of interest in a scene that is unified by
the definition of interesting: something is interesting if
it is sufficiently different from a model of the stationary
scene viewed through a stationary camera. The simplest
of these methods assume that the scene is truly static, so
that the uninteresting variability in the scene is adequately
described by a unimodal, zero-mean, white, Gaussian noise
process [13]. More complex systems include mechanisms
for rejecting lighting changes as uninteresting, such as vari-
ablility caused by cast shadows [3].

Finally, there is a class of algorithms that allow the
scene to be non-static. These algorithms represent the back-
ground as a multi-modal process [8], where each mode is a
static model plus a zero-mean, white, Gaussian noise pro-
cess [12]. The literature is far too varied to review here,
however all these techniques have at their core the common
assumption of a white process, that the observation process
has independent increments [11].

3 Cyclostationarity

The independent increments assumption means that two
samples drawn from the same pixel location will be in-
dependent. They may be drawn from the same probabil-
ity distribution, but they will be independent samples from
that distribution. The goal of the segmentation algorithm
is to decide if the samples are drawn from the background
distribution, or from some other, more interesting distri-
bution. By assuming independent increments, these al-
gorithms are relying completely on the appearance of the
scene. Let’s examine the case of a tree blowing in the wind.
The multi-modal background models[12] would build up
separate modes to explain, say sky, leaf, and branch appear-
ances. As the tree moves, the individual pixel may image
any of these. The independent increments assumption says
that these different appearances may manifest in any order.
However, we know that the tree will move with a character-
istic frequency response that is related to it’s physical com-
position. That characteristic response places constraints on
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the ways that the library of appearances may be shuffled.
Specifically, given two samples from the observation

process:x[k] andx[l], the independent increments assump-
tion states that the autocorrelation functionRx[k, l] is zero
whenk 6= l:

Rx[k, l]
4
= E [x[k]x∗[l]] (1)

= σ2δ[k − l] (2)

whereσ2 = E [x[k]x∗[k]] is the sample covariance and
δ[k−l] is the discrete-time impulse function. This is correct
when the process is stationary and white: such as a static
scene observed with white noise. For a situation where the
observations are driven by some physical, dynamic process,
we can expect that the dynamics will leave their spectral
imprint on the observation covariance. So if the process is
simply periodic, then we would expect to see very similar
observations occur with a period ofT samples, so in con-
trast to the above model:

Rx[k, k + T ] 6= 0

We say that this process is cyclostationary if the above re-
lationship is true for all time. More generally, wide-sense
cyclostationarity is defined as [11]:

µ[k] = µ[k + T ]∀t (3)

Kx[k, l] = Kx[k + T, l + T ]∀k, l (4)

whereKx[k, l] is autocovariance function for processes that
are not zero-mean. These types of processes can be more
complex than the simply periodic, and are characterized by
significant structure in their autocorrelation functions, as
illustrated in the self-similarity matrix shown in Figure 1.
Figure 2 shows the sample trace from a pixel that is observ-
ing lapping waves on a beach.

process is said to be harmonziable if its autocorrelation
can be reduced to the formRx[k − l], that is, so that the
autocorrelation is completely defined by the time difference
between the samples. It is possible to estimate the spec-
tral signature of harmonziable, cyclostationary processes in
a compact, parametric representation utilizing the Fourier
transform [2]. Figure 3 shows an example transform of the
same pixel as Figures 2 and 1 In the case of the evenly sam-
pled, discrete observation processes we encounter in com-
puter vision, we can use the efficient Fast Fourier Transform
(FFT).

In Waviz we propose to estimate a background model
that captures these spectral signatures, and then use those
signatures to detect changes in the scene that are inconsis-
tent with these signatures. By leveraging these dynamic
constraints, we should be able to achieve higher speci-
ficity than a segmentation algorithm that ignores these con-
straints. Below we show results that demonstrate the ability
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Figure 1: self-similarity matrix from the near-field water
region at pixel(320, 400)

of this kind of model it find low-contrast targets embedded
in high-variance, dynamic scenes that are largely inaccessi-
ble to classic techniques.

4 Using Spectral Similarity

Of course, the literature is not devoid of work that utilizes
spectral fingerprints as a classification feature. However all
the previous work on using spectral methods to classify ac-
tivity have in common that they apply the spectral methods
only to the foreground objects [6, 4, 1, 9, 7]. That is, ob-
jects that are either stationary in the frame, or have been
extracted from the scene and stabilized by some other pro-
cess, typically one of the segmentation schemes discussed
above combined with some kind of tracker framework.

The literature on temporal textures contains some work
on building searchable representations for video databases
that would allow the system to recognize activity. These
representations needed to be compact for storage in
databases, and concise for quick indexing. As a result they
involve summarizing the spectral content as a single num-
ber, for example, as the ratio of harmonic power to non-
harmonic power in the signal. This involves explicitly at-
tempting to extract features from the signal in the Fourier
domain[6, 4]. We make no prior assumptions about what
features will be interesting in the frequency domain, and in-
stead use the Fourier signal directly.

The surveillance literature also contains work on spec-
tral fingerprints that focuses instead on analysis of the full
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Figure 2: Sample trace from the near-field water region at
pixel(320, 400)

process autocorrelation function[1, 9]. This work is aimed
at detecting pedestrians and pedestrians with sprung masses
(backpacks, satchels, and the like). Howver, the word detect
in somewhat misleading in this work. The method classi-
fies targets into pedestrian, and non-pedestrian classes after
they have already been extracted from the scene using clas-
sical techniques. As a result, these works, like the others
above, make an independent increments assumption about
the scene dynamics, even while exploiting rich descriptions
of foreground object dynamics.

One system that is closely related toWaviz is the work
by Liu and Sarkar[5] that usesa priori models of the peri-
odicity in pedestrian motion to aid in the detection and seg-
mentation of pedestrians in video. It is similar to this work
in that it uses models of periodicity to segment video. This
is in contrast to the work mentioned above that uses peri-
odicity to classify motion only after it is segmented. It is
different from this work in that it is using engineered mod-
els of a particular foreground process that is deemeda priori
to be interesting: pedestrian motion.Waviz instead builds
modelsin situof the observed scene. It is therefore sensitive
to anything that is sufficiently different from that situation-
specific scene. Both use periodicity for segmentation, but
the Liu work has a pointedly narrow definition of interest,
while Waviz adopts a very inclusive definition.

5 Implementation

We begin by accumulating sample sequences for each pixel
from a number of frames of video. Each of these sequences
serves as an example of the periodic behavior of a particular
pixel in the image. An example sequence is shown in Fig-
ure 2. The sample shown in that figure represents a single
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Figure 3: Fourier transform of the near-field water region at
pixel(320, 400)

pixel over 128 frames of video.
These sequences,x[n] are used to initialize the back-

ground model for each pixel. We extract a harmonic series
representation,a[k] using a discrete Fourier transform, such
that:

x[t] =
N−1∑
k=0

a[k]ei2πkt/N

We use only the magnitudes‖a[k]‖ of the Fourier coeffi-
cients in the representation. We take this as an estimate of
the spectral components in the autocorrelation function of
the underlying scene process [2].

For each new samplex[n′] we extract a new harmonic
series representation,b[k] for the current observation sam-
ple usingx[n′] and the window ofN − 1 previous samples.
We take this to represent the process underlying the current
observations.

To determine if these two samples sequences were gen-
erated by the same underlying process, we compute theL2-
norm of the difference between the two harmonic series:

d = 〈a, b〉 =

(
N−1∑
k=0

(‖a[k]‖ − ‖b[k]‖)2
) 1

2

This distance,d provides a measure of the difference be-
tween the underlying processes. Small distances are taken
to mean that the samples are drawn from the same pro-
cess, and therefore represent observations consistent with
the scene.

The length of the window,N , is a parameter that must
be chosen with care. If the window is too small, then low-
frequency components will be poorly modeled. However
large windows come at the cost of more computation and
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more lag in the system. We compare results from 32-, 64-,
and 128-point windows below.

6 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a Fourier-
related transform used to determine the sinusoidal fre-
quency and phase content of a signal as it changes over time.
Simply described, a window function, which is non-zero
for only a short period of time, is multiplied by the func-
tion to be transformed. The window functions are applied
to avoid discontinuities at the beginning and the end of a set
of data. The smaller these discontinuities are, the faster the
side slopes drop. The window functions, such as a Gaus-
sian, usually have a cone shape centered around zero. The
data to be transformed is broken up into chunks, which usu-
ally overlap each other. Each chunk is Fourier transformed,
and the complex result is added to a matrix, which records
magnitude and phase for each point in time and frequency.
This can be written as:

S[k, ω] =
∑
m

x[n + m]w[m]e−jωm (5)

for signalx[n] and windoww[n]. One of the downfalls of
the STFT is that it has a fixed resolution. The frequency
resolution is set mainly by the size of the segment, although
some benefits may be derived from using a higher count
(zero-padded) FFT, especially when using small segment
sizes. The segment size also determines the percent of the
overall data stream processed in a single FFT. Thus the time
resolution is also fixed by the segment size (and to a much
lesser extent by the sharpness of the data tapering window).

The segment size thus controls the tradeoff between fre-
quency resolution and time resolution. Choosing a wide
window gives better frequency resolution but poor time res-
olution. A narrower window gives good time resolution but
poor frequency resolution. Optimizing the STFT usually
involves (1) finding an appropriate segment size, (2) setting
the density in time by adjusting the amount of redundancy
or overlap between the segments, (3) zero-padding the FFT
for small segment sizes to better render spectral maxima,
and (4) choosing an appropriate data tapering window.

6.1 Adaptation

Since the signals we encounter are almost never truly sta-
tionary, we add a simple exponential update mechanism to
the above algorithm. This consists of combining the current
estimate of the harmonic sequence with the estimate of the
scene’s harmonic sequence:

at+1[k] = at[k] + α(bt[k] − at[k])

uni multi 16-pt 32-pt 64-pt 128-pt
20 50% 37% 16% 10% 12% 32%
15 52% 38% 16% 13% 18% 33%
10 65% 46% 22% 22% 28% 42%

Table 1: Error rates. Percent of missed detections for three
levels of tolerance: 10, 15, and 20 pixels. See text for fur-
ther explanation.

Whereα is the exponential mixing factor that we set to0.02
in all our experiments.

7 Results

We tested our algorithm on 2000 frames of infrared video
of a boat moving offshore in the presence of waves. The
frames were taken from theAll-Zod2 sequence. Frames
600-2600 were chosen because the camera remains station-
ary during those frames. The boat is a low-contrast object
in the infrared video, and the wave action is a significant,
dynamic distraction for any background segmentation algo-
rithm. We compared several versions of our algorithm: us-
ing the 16-, 32-, 64-, and 128-point FFT. We also tested uni-
modal and multi-modal background subtraction algorithms.

In an attempt to most directly demonstrate the perfor-
mance of the background models, we present sequential
discovery performance. That is, we assume that there is
one target per frame, and in each frame we pick the most
novel pixel location as our estimate of the location of the
target. Figure 5 shows some examples of the images trans-
formed into distance maps by the algorithm. Obviously this
scheme could be improved on with any number of tracking
algorithms, but we feel this most directly demonstrates the
performance of the underlying scene models.

Figure 4 shows discovery results from three algorithms
superimposed on an example frame of the sequence. The
top row shows the independent increments methods (uni-
modal on the left, multi-modal on the right). The bottom
row illustrates the much better performance of the adaptive
FFT-based scene model using a 32-point (left) window and
a 64-point window (right). the results are plotted on a sam-
ple image from the scene for context.

Table 1 gives some quantitative results for five algo-
rithms: the unimodal model, a multi-modal model [8], and
four FFT-based models of varying window sizes. The per-
centages indicate the number of frames where the algo-
rithm’s estimate of the boat’s position was off by more than
the threshold in the left column, in pixels. You can see that
the 32-point, adaptive FFT performs the best of the five al-
gorithms, with almost 4 out of 5 detections falling within 10
pixels of the target.
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Figure 4: Tracking results.Top: unimodal (left) and multi-modal (right) background subtraction;Bottom: 32-point (left)
and 64-point (right) adaptive FFT.

uni multi 16-pt 32-pt 64-pt 128-pt
280 161 98 92 102 99

Table 2: The root mean squared error between tracking re-
sults and ground truth.

Table 2 shows overall root mean squared error for the al-
gorithms on the test sequence. Again the 32-point adaptive
FFT algorithm is the best performer. However the 128-point
adaptive FFT looks much better in this analysis: it signifi-
cantly out-performs both of the Gaussian models. Given
that the hit-rate performance if the 128-point algorithm was
similar to the Gaussian mixture performance, this may in-
dicate that the 128-point FFT is actually finding the target
more often, but is reporting a highly biased position esti-
mate that is causing near-hits to be often labeled as misses.

This assertion is given credence by the more detailed
analysis of the results in Figure 2. We can see that the multi-
Gaussian algorithm is very precise: if it find s the target it

then it reliably gets the position correct to within several
pixels. This is indicated by the sharp knee in the “multi”
curve of Figure 6. The FFT-based algorithms seem to intro-
duce a bias that corrupts the position estimate despite what
is essentially a successful detection. We suspect that this is
doe to lags introduced by the windowing of the sliding FFT.
Eliminating that lag should be possible, but is deferred to
future work.

8 Conclusion

We have presented a novel algorithm calledWaviz that de-
tects new objects based solely on the dynamics of the pix-
els in a scene, rather than their appearance. This is ac-
complished by directly estimating models of cyclostation-
ary processes to explain the observed dynamics of the scene
and then comparing new observations against those models.
We have presented results that demonstrate the efficacy of
this algorithm on challenging video.
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threshold determining what is an acceptable hit.
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Figure 5: Left: Select frames from the sequence.Center: The distance transformed images that are generated by the
multi-modal Gaussian background algorithm.Right: Corresponding images created by the 64-point FFTWaviz algorithm.
Bright means novel. Frames are individually normalized.
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